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ABSTRACT

In this paper, stochastic control theory is applied to the problem of de-
signing a digital flight compensator for terminal guidance along a helical
flight path as a prelude to landing. The development of aircraft, wind, and
measurement models is discussed along with a control scheme consisting of feed-
back gains multiplying estimate of the aircraft and wind states obtained from
a Kalman one-step predictor. Preliminary results are presented which indicate
that the compensator performs satisfactorily in the presence of both steady
winds and gusts.

1. INTRODUCTION

During the past few decades, the number of problems associated with air-
port traffic has risen dramatically. Among the more pressing areas of concern
are high noise levels near airports, fuel conservation, and weather-induced
delays, diversions, or closures. In order to alleviate some of these problems,
NASA and the FAA have jointly initiated  a long range research effort, the Term-
inal Configured Vehicle (TCV) program (ref. 1). Among the objectives of the
TCV program are increased capability for zero-visibility operation, reduced air
delays and route time, avoidance of sensitive areas, and reduced noise source
intensity. These objectives can be met, at least partially, through the devel-
opment of precise automatic control along steep, curved approach paths.

A prerequisite to such precise automatic control is the development of im-
proved ground-based navigation and guidance systems along with improved airborne
control systems. The ground based improvements in terminal area navigation and
guidance will be provided by the Microwave Landing System (MLS). The MLS will
periodically provide accurate range, elevation, and azimuth information to the
on-board control ‘system.

The purpose of this paper is to present an application of stochastic con-
trol theory to the problem of designing an airborne control system that uses
the MLS data for terminal area guidance of a Boeing 737 along a helical flight
path as a prelude to landing. First, a system model is presented consisting of
an aircraft model, wind model, and measurement model. WNext, the digital compen-
sator design is presented. Finally, a digital simulation showing the system
response using the above compensator is presented.

2, THE SYSTEM MODELS

In this chapter the aircraft, wind, and measurement models are developed.

*This work was supported under NASA research grant NSG 1199.
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2.1 The Aircraft Model

The notation in this section follows closely that in Etkin (ref. 2). Thus,
F1 and Fg denote inertial and Earth reference frames, respectively. If V is the
mass center velocity of an aircraft, VI and VE denote the vector quantity V meas-
ured with respect to Fr and Fp, respectively. Also VEV is the vector quantity
VE expressed in the vertical reference frame (Fy) coordinates.

The basic nonlinear aircraft model consists of the vector force and moment
equations, a set of kinematic constraints, inertial velocity equations, and a
set of actuator equations. The force equation is f = mac, where f is the exter-
nal force and a. is the mass center inertial acceleration. Assuming the Earth
is an inertial system and is locally flat, 5& = VE (the dot notation means time
differentiation), so that acp = VEg + wBg x VEB, where EBB = [p q r]' is the

angular velocity of Fp and VEB is the mass center inertial wvelocity, both ex-
pressed along the body axes. The prime means transpose.

Let W denote the wind velocity. Also, let F, be an atmosphere-fixed refer-
ence frame and V the mass center velocity with respect to Fp. ThenVEg = Lpy Vy
+ Wp, where Ly, transforms wind-axes components into body-axis components
(ref. 2). Hence,

d — — — _ _
g = a (LBw Vy + Wp) + wBp x (Lp, Uy + Wp) (2.1-1)

The external force is fy =Ap + Ty + mgp, where Ag is the aerodynamic
force, Ty is the thrust, and mgp is the gravity force. Hence, the vector force
equation is

d oy = —B = - 1— 1= -
dat (LBW VW + WB) + B X (LBW VW + WB) = a AB + o TB + gB (2.1—'2)

The vector moment equation is'g = h, where G is the external moment and h
is the angular momentum. Assuming I = O and neglected and elastic components
of h, hg = I EBB, where I denotes the body-axes moments of inertia. Thus,

Gy = I wbp + wbp x I b (2.1-3)

The external moment'EB includes the effects of the gust angular velocities
Pg> dg> and rg. These effects show up explicitly in the perturbation model.
The scalar components of (2.1-2) and (2.1-3) involve both the body-axes

Euler angles ¢, 8, and ¢ (bank, pitch, and heading angles, respectively) and
the body-axes rYates P, 4, and r. The two sets of variables are related by

& =p+ qsin¢ tan 6 + ¥ cos ¢ tan O
8

q cos ¢ — r sin ¢ (2.1-4)
¥ = (q sin ¢ + r cos $) sec ©

The Earth position is described in cylindrical coordinates with origin at
the helix center at ground level. The position of the origin is assumed to be
known with respect to the MLS origin. The rates of the Earth position coordin-
ates (helix radius R, helix angle v, and altitude h) are given by

R

V cos ¥ cos (ww - v) + Wy cos v + Wy sin v

W
% cos Yy sin (¥, - v) - iz-sin v + EX cos Vv (2.1-5)

V sin vy - W,
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where y and ¥, are wind-axes elevation and heading angles and Wy, Wy, and Wz
are coordinates of W in the reference frame Fg.

The remaining equations result from modeling the thrust throttle and sta-
bilizer actuator systems. The thrust-throttle relation is modeled as a first-
order lag with a time constant of 0.5 second. Because this relation is a lin-
earization about nominal values, the equation is given with the development of
the perturbation model. 1In addition, throttle and stabilizer rates are command-
ed inputs, so that throttle and stabilizer positions are state variables.

The nonlinear aircraft model consists of the force equation (2.1-2), the
moment equation (2.1-3), the kinematic constraints (2.1-4), the inertial velo-
city equations (2.1-5), and the actuator relations. The model can be written
in usval state variable form as a single, nonlinear vector equation
X=fX, U, W, W) (2.1-6)
where X=[VBa Pqr ¢ 8 Yy RvhTma4]' is the total state vector,

[# 4 Se 8r Sa Ssp]' is the commanded input vector, W = [ug Vg Wg Pg dg Tg
WR WT]' is the wind vector, and where B is the 31desllp angle, a is the angle
of attack, T is the thrust, m is throttle setting, 4 is stabilizer, 6, is the
elevator, gy is the rudder, §5 is the aileron, Ssp 1is the spoiler, ug, Vg, and
wg are translational gust velocities, pg, dg, and rg are rotational gust velo-
cities, and WR and Wy are radial and tangential components of the steady wind,
respectively.

The perturbation model consists of the first-order terms in a Taylor
series expansion of (2.1-6) about a descending helical equilibrium. The equi-
librium was determined under a zero wind condition with the aircraft flying a
"truly banked" turn (ref. 2) for an airspeed of 64 m/sec (120 knots), bank angle
of 15° and angle of elevation of -3°, using data for the Boeing 737 from the TCV
program. The coefficients in the perturbation model were computed by evaluating
the appropriate partial derivatives at the equilibrium. The coefficients of
Pg, dg, and rg in the moment equations were computed by evaluating the partials
o% the aerodynamic terms in (2.1-3) with respect to p, q, and r, respectively.
Finally, the thrust-throttle relation is 8T = - 0.5 8T + 313.33 8w, where the
thrust is in pounds, the throttle setting in degrees, and the "§" indicates a
perturbation value. The perturbation model in usual state variable form is

= Ax + Bu + Dgw + Dgy W (2.1-7)
where x, u, and w are the perturbation counterparts,of the total vectors X, U,
and W in (2.1-6).

2.2 The Wind Model

As seen in section 2.1, the wind vector in the aircraft model consists of
three translational gust velocities ug, Vg, and wg; thrée rotational gust velo-
cities pg, qg, and rg; and two steady wind components WR and Wy. The gust velo-
cities, all of which are components along the body-axes, are modeled as having
the Dryden spectra and are produced for simulation and filter design purposes
by a linear system processing white noise. As an example of the linear system
design, consider the gust velocity ug, normalized by the equilibrium alrspeed
Ve. The power density spectrum of the normalized ug is by (@) = (2Lu0u /Ve™)

/(1 + (Luw/Vez), where 0y is the rms gust velocity, L, is a turbulence scale
factor, and w is the frequency variable in rad/sec. WNow, if a linear system
with transfer function H(jw) = 1/(1 + jw Ly/Ve) is subjected to a white noise
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input with variance ¢2 = (2Luou2/Ve3), the output is a random process with the
spectrum ¢y (w) (ref. 3). A system with the required transfer is described in
state-variable form by Xwl = (-Ve/Ly) Xu1 + (Ve/Ly) T2 W1 = X1, where g3 is a
mean zero white noise process with variance (2LyoyZ2/Ve®), %1 is a state vari-
able, and w; is the output having the required spectrum. The remaining gust
velocities are generated in a similar manner.

As indicated in the previous section, WR and Wt are the radial and tangen-
tial components of the steady wind, which are related to the north wind Wy and
east wind Wy by the spiral angle v:

WR = Wy cos v + Wy sin v (2.2-1)
Wr = Wy sin v - WE cos v

Thus, WR = - v Wy and Wy = v WR. For the simulation purposes, north and east
winds are selected and WR and Wy are computed using equations (2.2-1). For the
filter design, because a constant coefficient wind model is desired and the
equilibrium wind is zero, Wp and Wt are approximated by
WR = - Ve WT
WT - \-)e Wg (2.2-2)
where Qe is the equilibrium spiral angle rate, which is constant and equal to
Ve cos Yeo/Re.

Putting together the gust system equations and the steady wind equations
(2.2-2) yields a time-invariant, linear wind model of the form iw = Ay Xy + Bwi
and w = Cy %y, where ¢ is the white noise vector generating the gusts, X%, is the
state vector of the wind model, and w is the wind vector used in the perturba-
tion model. In order to use Xy in the perturbation model equations, w = ¢, X,
and w = Gy Ay Xy + Cy By ¢ are substituted into equation (2.1~7) to give a com-

bined aircraft/wind model:
X = Ax + Bu + Dy x4 + Dy T
kw = Ay Xy + By T
where Dg = Dy; C, + Doy G, A, and Dy = Dgg C. By

2.3 The Measurement Model

(2.2-3)

Measurements available for control purposes consist of the MLS data (range,
azimuth, and elevation) and a number of on-board sengor readings. The total
measurement vector is Y= [# Az EL p qr ¢ 6 ¢ V hy hp Xp ¥g Zgl', where 4, Az,
EL are the MLS data; p, q, r are angular velocities from rate gyros; ¢, 6, ¥ are
bank angle, pitch, and heading from position gyros; V is an airspeed indicator
reading, hp and hb are barometric altimeter and vertical speed indicator read-
ings; and Xg, ¥g, Zp are body-mounted accelerometer readings.

The total measurements are computed for simulation purposes by computing
the total state variables as equilibrium values plus increments and expressing
the measurements in terms of the states. 1In order to compute the MLS data, it
is assumed that the %, Az, and Ef are measured with respect to a common origin
and that the helix center is known with respect to that origin. If the ground
coordinates of the helix center with respect the MLS origin are (X5, ¥o), then
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/L=\/(xo+Rcosv)2+(yO+Rsin\))2+h2
+ R sin v
= ran-1 | o
Az tan X, + R cos é]
EL =

h
gan~1 | ]

L,(xo + R cos v)z + (yo, + R sin v)2
where R, v, and h are coordinates 10, 11, and 12 of the total state vector,

The fourth through eleventh measurements are the same as total states.

Also hp = Vg sin ye + xj9, where the derivative xj) is computed from equation
2.2-3). Finally, expressions for the accelerometer readings are obtained by
writing out the scalar components of the acceleration'EbB from equation (2.1-1),

In the simulation, the measurements are generated using the above relatiomns
along with random noise effects. Except for the airspeed and vertical speed
indicators, the noise is an additive, white, mean zero Gaussian process with
standard deviation as shown in Table 1 (ref. 4 and 5). The airspeed and verti-
cal speed indicator noises are multiplicative, where the indicated measurement
is obtained by multiplying the actual measurement by a normal random variable
of mean 1 and standard deviation as given in Table 1.

The incremental measurements to be used with the perturbation model are
calculated by subtracting the equilibrium measurement values from the total
measurements discussed above except for the first three incremental measurements.
For these first three, total helix radius R, helix angle v, and altitude h are
computed from range, azimuth, and elevation using the following equations:

R

(1 cos EL cos Az - xo)2 + (L cos EL sin Az - yo)2

_ 7 cos EL sin Az - y_
Y = tan [/Lcos, EﬂsinAZ—x]
h = & sin E£

(¢]

Then the equilibrium radius, angle, and altitude are subtracted to generate the
incremental measurements.

The fifteen incremental measurements are linear functions of x and xy.
Hence, the incremental measurement vector y can be written as y = Cx + Cy Xy + v
where v is a noise term whose coordinates are assumed to be white, mean zero
Gaussian processes with standard deviations that are the same as for the total
measurements except for the noise terms in yj, y2, y3, Yig, and yjp (see Table
1.

b4

3. THE CONTROL SYSTEM DESIGN

Using the aircraft, wind, and measurement models presented in the previous
chapter, the total system model is

x(t) = Ax(t) + Bu(t) + Dgw(t) + D3z(t) (3-1)
w(t) = Ayw(t) + B,z (t) (3-2)
y(t) + Cx(t) + Cuw(t) + v(t) (3-3)

where x, u, w and y are the state, control, wind disturbance, and measurement
vectors resp., v(t) is a white, Gaussian vector of measurement noise and z(t) is
a white, Gaussian noise vector that drives the wind system and corrupts the air-
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craft system. The matrices A, B, Dy, Dj,s AW, By, C and Gy are time-invariant
with appropriate dimensions.

The problem of designing a feedback compensator is posed as the usual lin-
ear, stochastic regulator problem. For the regulator problem, a quadratic cost
functional of the form

T2 0T ) ax(e) + u' () Ruo)]ae) (3-4)
o
is used, where E is the expectation operator, the prime denotes the transpose,
and both Q and R are positive definite, time-invariant weighting matrices. The
problem can now be stated as follows. Given the linear system of equations
(3-1 to 3-3), find a control u such that the cost functional J of equation (3-4)
is minimized.

The first step in solving this problem is to transform the system of equa-
tions (3-1 to 3-4) into their discrete-time equivalents. This is done for
several reasons. First, a digital compensator is desired since the on-board
computer is digital and any control algorithm must be compatible with a digital
system. Secondly, the MLS data is only provided periodically. Therefore, the
measurement system is inherently a discrete-time one. Finally, a digital simu-
lation is used to test each design. Therefore, the discrete-time equivalent
difference equations make the simulation very easy to implement on a digital
computer.

The equivalents are obtained by integrating the system differential equa-
tions and cost functional over each sampling period (ref. 6).

If we restrict u(t) to be constant over the sampling period, the resultant
discrete-time equations are

Xp+1 = $xk + To Wi + Fl e + & (3-5)

Witl = 9w Wit ony (3-6)
where the subscript k denotes the kth sample and [E&: ni]' is a meanr zero,
white noise sequence whose variance depends on the variance of the continuous
noise vector z(t).

The discrete—~time equivalent measurement equation can be obtained directly
from the continuous time equation:

y = Cxg + Cywr + vk (3-7)

Finally, the discrete-time equivalent of the cost functional (3-4) can be
written as a sum of n integrals. The resultant expression for the cost func-
tional becomes:

1 o 1 Py IA lh 'A
J = E‘E {kgo K1 ka+l + 2Xk+l ka+l + 2Xk Muk + ug Ruk} (3-8)

Note that, since the original system and cost matrices are time-invariant,
so are the discrete-time system and cost matrices.

The problem can now be restated as follows. Find a control sequence uyp
which minimizes the cost functional J in equation (3-8) subject to the con-
straints that the state equations (3-5, 6, 7) must be satisfied and that {uy}
must explicitly depend only on the past measurements yjp = {yo, Yiseoss yk—l}’
where v is a zero-mean, Gaussian, white noise sequence independent of
Lekingk]".

The above system of equations (3-5, 6, 7, 8) can be augmented to obtain a
form very similar to the discrete linear quadratic Gaussian stochastic control
problem. However, if the normal method of solution is applied, an important
difficulty surfaces. The total system may be unstable and uncontrollable due
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to an unstable wind system. Therefore, if the augmented system is solved with
an unstable wind system, the solution to the Riccati equation diverges due to
the presence of unstable and uncontrollable poles. But, under certain con-

ditions the gains will be bounded.
It can be shown (ref. 6 ) that the solution to the stochastic optimal con-

trol problem described previously exists and is given by:
N A
= - HpXp — Hgewg
_ ~_1 _ ~_l lod _ ~ '

B = R” G Hpe = Ry Gy Bye = R+ T] Byely
=TI Pd + |, G = T3 (R by + Pil2)
1 A ' -1
Pr-1 = ¢'Prd +Q - G} R™L Gy, P =

[=
ok
|

(9]
P
|
o>

~_ A ~
Puk-1 = (4-T1R 16 ) " (B 6, + PKlp) + N, Py = N
where Qk and Qk are one-step predicted estimates of Xy and wy given by:

;{\k =K {Xklyk_l} and '\'}k = E {Wklyk_l}

It should be noted that the above gain equations remain valid for any i-step
predicted estimate (where i = 0 represents a filtered estimate). The one-step
prediction- was used here in order to account for computational delays present
in the on-board computer.

Also, the equations above are of a recursive nature. Therefore, at each
sampling instant a new optimal gain is calculated. To implement this would
require storing all the intermediate values of each gain matrix. This, in turn
would require a greater amount of storage than is normally available for small,
on-board computers. For these reasons, a suboptimal design was used consisting
of only the steady state gains obtained when the index on the recursive rela-
tions tends to infinity.

It should be emphasized that the optimal control for a system with distur-
bances consists of two parts. The first part feeds back state estimates multi~
plied by an optimal gain Hy. This gain is exactly the same as would have been
calculated with no disturbance present. The second term feeds back the distur-
bance estimates multiplied by a gain Hyk, which depends on the disturbance.

The next step is to obtain the state and wind estimate. This is accom-
plished by first augmenting the discrete~time equations (3-5, 6, 7):

) - ) ()-8 oo (3]
= [clcy,] [wk] v

Xk 1s a white noise term representing modeling error.
Given the past measurements yy, it can be shown (ref.7 ) that the one-step
predicted estimates of Xy4j and wyy] are given by the equations below:

R ) _ [(#T2 % 1 | R
)G ) o (8] mew (et (5]

A _ _ A
where X, = my = E {x,}, W, = 0, and
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S LD RS 1" el [cic,]" -1
kT L0 e T R

}
% % ' % X 2

where Iy = E {[—1—(][:;1-( } R [;}—(:} [:—1—(:] [/—\1—‘ is the estimation
T Wk Wk Wk Wk

error, and Zj can be found by solving the Riccati type equations:

ofry | L o=
6%5. B
X5 XO ' _ gkﬂ gk ' '
= 4 - = .= E —_— —_ + E
where ZO - {[wo] [wo] & k akj {[ Nk [nk : {Xk Xk}

1
8y ij =E {v Vj}

£. ! X ' £ X '
and E {\)k[:—lj } = E{ v [;&9] 1= E{[—ET [;79:] } =0 for all k
nj o nk..a (o]

i=0,1, 2, ....

It must be noted that, as with the control equations, these equations are
recursive. For the same reasons discussed previously, a suboptimal predictor
was implemented using only the steady state solutions to the above equations.

Now that the optimal controls have been defined for specific cost matrices
the main concern becomes testing to see if the chosen cost matrices lead to an
acceptable system response or if they must be modified to achieve this goal.
The digital simulation described in the next section will provide the final
step of the design procedure satisfying the above testing and modification
requirements.

¢lr _
Zp+l = [5’@2:] {7, - 5 [eie,]t (Leley] oy [efc,l™ + 8y) cte, ] 5}

4. SIMULATION RESULTS

The main objective considered in generating these results was to design
the control system so that the aircraft position was kept close to the equilib-
rium in the presence of various steady wind magnitudes. Thus, the objective was
to keep the helix radius, altitude, and airspeed perturbations small while
allowing some of the other perturbations, such as the altitude variables, to
become relatively large.

The first set of results (Table 2) shows how the control system reacts to
increasing steady winds. Three simulation runs were made with steady wind velo-
cities of 3.05 m/sec (10 ft/sec), 6.1 m/sec (20 ft/sec), and 12.2 m/sec (40
ft/sec). The rms gust velocity in all runs was 0.61 m/sec (2 ft/sec). The
results in Table 2 indicate that, as the steady wind increases, the maximum
deviations in the bank angle, heading angle, and helix angle also increase pro-
portionally, while the maximum deviations in helix radius, altitude, and air-
speed increase at a much smaller rate.

The results in Table 3 show the importance of the control gain matrix Hy
in controlling the aircraft in the presence of winds. Two runs were made with
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12.2 m/sec (40 ft/sec) winds, one with H, used in the control scheme and one
without H,. As the results indicate, the Hy term in the control calculations
has a large effect in providing satisfactory control in the presence of winds.

5. CONCLUDING REMARKS

A linear, time-invariant perturbation model of an aircraft flying a des-
cending helix in the presence of winds was developed. An automatic control
system was designed through an application of the linear—quadratic-Gaussian
discrete-time regulator theory.

Using a performance criteria including maintaining a circular ground
track of correct radius as well as maintaining proper altitude and airspeed,
preliminary simulation results have shown that the control system can perform
satisfactorily in the presence of steady winds without excessively large devi-
ations in other variables, such as bank and pitch angles.
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TABLE 1. MEASUREMENT NOISE STANDARD DEVIATIONS

MEASUREMENT NOISE STANDARD DEVIATION

Range .305 m (1 foot)
Azimuth 0.41 x 1073 rad
Elevation 0.61 x 1073 rad
Helix Radius 1.52 m (5 feet)
Helix Angle 1073 rad
Altitude 3.05 m (10 feet)
Rate gyros (p, q, r) 0.1 deg/sec
Bank gyro 0.5 deg
Pitch gyro 0.15 deg
Heading gyro 1. deg
Airspeed (total) .02
Airspeed (incremental) .02 v,
Barometric altimeter 8.38 m (27.5 feet)
Vertical speed indicator (total) .05
Vertical speed indicator .05 ﬁb

(incremental) e
Accelerometer (ﬁB, ZB) 4.91 cm/sec? (.161 ft/sec?)
Accelerometer (§B) .491 cm/sec? (.016 ft/secz)
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TABLE 2.

EFFECT OF STEADY WINDS

Steady Wind Magnitude, m/sec (ft/sec) 3.05 (10) 6.1 (20) 12.2 (40)
Maximum Perturbation Magnitude
Bank angle, deg 2.0 3.1 6.7
Heading angle, deg 9.1 16.3 31.4
Helix angle, deg 5.2 9.7 19.5
Airspeed, m/sec (ft/sec) 1.7 (5.6) 1.4 (4.5) 2.0 (6.6)
Helix radius, m (ft) 5.6 (18.3)] 7.3 (24.0) 11.0 (36.0)
Altitude, m (ft) 7.3 (24.0)} 8.1 (26.7) 10.0 (32.8)
TABLE 3. EFFECT OF CONTROL GAINS HW
Maximum Perturbation Magnitude with HW without Hw
Airspeed, m/sec (ft/sec) 2.1 (6.8) 3.2 (10.4)
Helix radius, m (ft) 11.3 (37.0) 81.7 (268.1)
Altitude, m (ft) 10.3 (33.8) 16.0 (52.4)
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